ESCHMANNSTAHL

ES 65 S

Name:

X 100 CrMoV 5

Material No.:

1.2363

Typical analysis in %:

C Cr Mo V 1.0 5.2 1.2 0.3

As-supplied condition:

Soft-annealed to max. 241 HB (810 N/mm²)

Characteristics:

Air-hardening special cold work steel, with respect to toughness and wear resistance it is between medium and high alloyed steels; good machinability, high hardenability, low dimensional

changes as a result of heat treatment, good through-hardening properties and excellent compressive strength

General fields of application:

Cutting and pressing tools, rollers, shearing knives, thread rolling dies, cold stamping tools, calibration and pilger mandrels, moulds for plastic processing, gauges and measuring tools

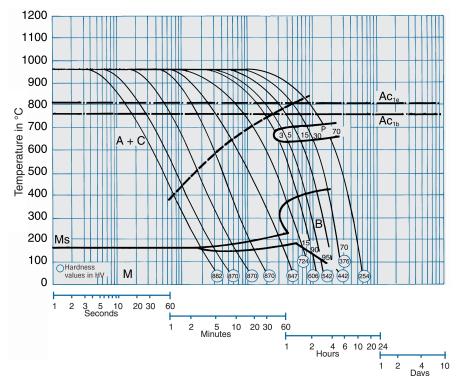
Special note:

If electrical discharge machining takes place after hardening then the material should be tempered three times above 520 °C after quenching.

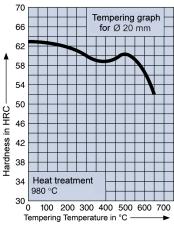
Heat treatment data:

	Temperature	Duration	Cooling
Soft annealing	820 - 850 °C	4 - 6 h	furnace
Stress-relief annealing	600 - 650 °C	min. 4 h	furnace
Hardening	950 - 980 °C	Group II	oil, air, WB 500 °C
Tempering	180 - 600 °C see tempering curve	min. 2 h depending on	still air cross section

Physical characteristics:


Coefficient of thermal expansion: between 20 °C and:

10 ⁻⁶ x m	100	200	300	400 °(
m x K	9.9	12.5	13.2	14.5


Thermal conductivity: W 20 350 700 °C m x K 15.8 26.7 29.1

Normal working hardness: 58 - 62 HRC

Continuous time-temperature-transformation diagram

Tempering curve

